Three-dimensional microarchitecture of adolescent cancellous bone.

نویسندگان

  • Ming Ding
  • Carl Christian Danielsen
  • Ivan Hvid
  • Søren Overgaard
چکیده

This study investigated microarchitectural, mechanical, collagen and mineral properties of normal adolescent cancellous bone, and compared them with adult and aging cancellous bone, to obtain more insight into the subchondral bone adaptations during development and growth. Twenty-three human proximal tibiae were harvested and divided into 3 groups according to their ages: adolescence (9 to 17 years, n=6), young adult (18 to 24 years, n=9), and adult (25 to 30 years, n=8). Twelve cubic cancellous bone samples with dimensions of 8×8×8 mm(3) were produced from each tibia, 6 from each medial and lateral condyle. These samples were micro-CT scanned (vivaCT 40, Scanco Medical AG, Switzerland) resulting in cubic voxel sizes of 10.5*10.5*10.5 μm(3). Microarchitectural properties were calculated. The samples were then tested in compression followed by collagen and mineral determination. Interestingly, the adolescent cancellous bone had similar bone volume fraction (BV/TV), structure type (plate, rod or mixtures), and connectivity (3-D trabecular networks) as the adult cancellous bone. The adolescent cancellous bone had significantly lower bone surface density (bone surface per total volume of specimen) but higher collagen concentration (collagen weight per dry weight of specimen) than the adult cancellous bone; and significant greater trabecular separation (mean distance between trabeculae), significant lower trabecular number (number of trabeculae per volume), tissue density (dry weight per volume of bone matrix excluding marrow space) and mineral concentration (ash weight per dry weight of specimen) than the young adult and adult cancellous bones. Despite these differences, ultimate stress and failure energy were not significantly different among the three groups, only the Young's modulus in anterior-posterior direction was significantly lower in adolescence. Apparent density appears to be the single best predictor of mechanical properties. In conclusion, adolescent cancellous bone has similar bone volume fraction, structure type, and connectivity as the young adult and adult cancellous bones, and significant lower tissue density, bone surface density and mineral concentration but higher collagen concentration than in the young adult and adult bone. Despite these differences, the mechanical properties did not show significant difference among the three groups except less stiffness in anterior-posterior direction in the adolescents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone.

Bone mineral density (BMD) and bone microarchitecture are important determinants for the mechanical properties of cancellous bone. Although BMD alone is a good predictor of average mechanical properties of cancellous bone, there remains unexplained variation in mechanical properties that might be due to missing information regarding bone microarchitecture. Recent developments in three-dimension...

متن کامل

Use of axial X-ray microcomputed tomography to assess three-dimensional trabecular microarchitecture and bone mineral density in single comb white leghorn hens.

Axial x-ray microcomputed tomography is a cost-effective technique with the potential to assess bone mineral density (mg/cc) in both cortical and cancellous bone in Single Comb White Leghorn hens. The technique requires little sample preparation and involves relatively simple data processing. The system described in this research is based on compact fan-beam type tomography, using a tungsten-an...

متن کامل

Texture Analysis in Quantitative Osteoporosis Assessment: Microarchitecture

The microarchitecture of the trabecular bone is an highly informative feature for osteoporosis assessment. High resolution peripheral quantitative computed tomography permits its in-vivo observation at a resolution of 82 μm. In this paper we propose an approach that assesses bone microarchitecture based on texture features extracted from the trabecular bone. The method is based on three-dimensi...

متن کامل

Effect of Abutment Height Difference on Stress Distribution in Mandibular Overdentures: A Three-Dimensional Finite Element Analysis

Background and Aim: Implant-supported overdentures are a treatment option for edentulous patients. One of the important factors in determining the prognosis of overdenture treatment is to control the distribution of stress in the implant-bone and attachment complex. This study assessed the effect of implant abutment height difference on stress distribution in mandibular overdentures. Materials...

متن کامل

Beta-1 Adrenergic Agonist Treatment Mitigates Negative Changes in Cancellous Bone Microarchitecture and Inhibits Osteocyte Apoptosis during Disuse

The sympathetic nervous system (SNS) plays an important role in mediating bone remodeling. However, the exact role that beta-1 adrenergic receptors (beta1AR) have in this process has not been elucidated. We have previously demonstrated the ability of dobutamine (DOB), primarily a beta1AR agonist, to inhibit reductions in cancellous bone formation and mitigate disuse-induced loss of bone mass. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 2012